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Abstract
We prove the meridional rank conjecture for twisted links and arborescent links asso-
ciated to bipartite trees with even weights. These links are substantial generalizations
of pretzels and two-bridge links, respectively. Lower bounds on meridional rank are
obtained via Coxeter quotients of the groups of link complements. Matching upper
bounds on bridge number are found using the Wirtinger numbers of link diagrams, a
combinatorial tool developed by the authors.

1 Introduction

Themeridional rankμ of a link L in S3 is theminimal number ofmeridians of L needed
to generate π1(S3\L). It is an immediate consequence of the Wirtinger presentation
for π1(S3\L) in a suitable diagram that μ(L) is bounded above by the bridge number
β(L). The meridional rank conjecture asks whether the equality μ(L) = β(L) holds.
This question originates with Cappell and Shaneson’s work on the Smith Conjecture
[10] and is given as problem 1.11 in [18].

Boileau and Zimmermann [8] showed that μ = 2 implies β = 2. The equality
β = μ has been established in various special cases, such as Montesinos links [7],
torus links [22], and others whose complements satisfy certain geometric conditions
[2,5,6,12,21].

We prove the meridional rank conjecture for two new classes, twisted links and
arborescent links associated with bipartite trees with even weights. We also explicitly
compute the bridge numbers of all links in these classes.
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Fig. 1 Bipartite tree with even
weights
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To define twisted links, let D be a diagram of a link L , admitting no reducing Rei-
demeister moves of types I and II, and let F be one of the two surfaces with boundary
L obtained from a checkerboard coloring of the regions in the plane determined by D.
We regard the surface F as a union of disks and twisted bands, whose combinatorics
we store in a plane graph � ⊂ R

2 with weighted edges. We say the surface F is
twisted if every band has at least one full twist, and if the plane dual graph �∗ ⊂ R

2

of � has no multiple edges. A link is twisted if it admits a diagram which determines
a twisted surface via a checkerboard coloring. Figure 4, a pretzel knot, is an exam-
ple of a twisted diagram.

Theorem 1 The meridional rank conjecture holds for twisted links. The bridge number
of a twisted link is equal to the number of planar regions in the complement of the
projection of a twisted surface.

The class of arborescent links generalizes both two-bridge links and Montesinos
links. They are definedbyplumbing twisted bands in a tree-like pattern.More precisely,
an arborescent link is associated to a plane tree T ⊂ R

2 with weighted vertices. The
vertices are in one-to-one correspondence with embedded annuli; their integer weights
indicate the number of half-twists of the corresponding annuli. A precise definition of
how the annuli are to be plumbed together along the edges of T can be found in [16].
We will only consider trees with even non-zero weights, a condition which implies
that all the bands involved are orientable, and that their union forms a minimal genus
Seifert surface of the corresponding link, see again [16]. For technical reasons, we
will also restrict the class of trees. A (plane) tree is called bipartite, if all the vertices
of valency at least three carry the same color with respect to any of the two bipartite
colorings of that tree. An example of a plane bipartite tree with even weights is shown
in Fig. 1. The corresponding arborescent link is shown in Fig. 2 (with some additional
labels for later use). The class of arborescent links associatedwith evenweight bipartite
trees contains all two-bridge links. Indeed, the latter correspond to even weight trees
“without branches", i.e. to trees homeomorphic to an interval, see [11]. On the other
extreme, the class of arborescent links associated with even weight bipartite trees also
contains the class of slalom divide links defined by A’Campo [1]. In fact, these links
are obtained by plumbing positive Hopf bands along bipartite trees. In our setting,
this means that all weights are two. This follows from the visualisation algorithms for
divide links described in [17,24].
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Fig. 2 Arborescent knot

Theorem 2 The meridional rank conjecture holds for arborescent links associated
with bipartite trees with non-zero even weights. The bridge number of such a link is
equal to the number of leaves of the underlying tree.

We prove Theorems 1 and 2 by obtaining an upper bound on the bridge number
β(L) and a matching lower bound on the meridional rank μ(L), from a suitable
diagram. The lower bound on μ arises from a Coxeter quotient of π1(S3\L) mapping
meridians to reflections; see Proposition 1. The upper bound on β comes from the
Wirtinger number ω of a link diagram D; see Sect. 3. The bridge number β(L) equals
the minimum value of ω(D) over all diagrams D of L [4, Theorem 1.3]. As we will
see, if a link L admits a diagram D and a Coxeter quotient of rank equal to ω(D), the
meridional rank conjecture holds for L . Our approach was inspired by a method for
obtaining Coxeter and Artin quotients from knot diagrams introduced in [9].

Besides establishing the meridional rank conjecture for new classes of links, our
technique also recovers the result for pretzel links and, more generally, Montesinos
links, in a new way. We also remark that, for knots whose meridional rank is detected
via Coxeter quotients, meridional rank is seen to satisfy Schubert additivity under con-
nected sum without relying on equality with bridge number. Additivity of meridional
rank under connected sum, which is implied by the meridional rank conjecture, is an
interesting open question in its own right.

2 Lower bounds onmeridional rank

The rank of a group G is the minimal cardinality among all generating sets of G. The
meridional rank of a link L is clearly bounded below by the rank of its fundamental
group, thus by the rank of any quotient of the latter. However, this is not an effective
bound, since there is an abundance of links with rank two fundamental groups and
arbitrarily high meridional rank, for example torus links. This fact carries over to a
variety of groups with a geometric flavour: mapping class groups, symmetric groups
andfinite irreducibleCoxeter groups have rank two, but they are typically not generated
by a small number of standard generators, such as Dehn twists, transpositions and
reflections, respectively. We should thus expect much better lower bounds on the
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Fig. 3 Coloring a two-braid with
reflections

abababa

ababa

aba

a

ababa

aba

a

b

meridional rank of links by considering quotients with a distinguished conjugacy
class (on which the meridians of the link are to be mapped), which does not admit a
small number of generators. We will apply this method to the class of Coxeter groups,
and the conjugacy class of reflections. Recall that the Coxeter group C(�) associated
with a finite simple graph � with weighted edges is the group whose generators are
in bijection with the vertices of �, subject to the following two types of relations:

1. s2 = 1 for all generators s,
2. (st)k = 1, for all pairs of generators s, t connected by an edge of weight k ∈ N.

Throughout this paper, we assume all edge weights to be at least two. Elements of a
Coxeter group G = C(�) conjugate to any of the generators are called reflections.
We refer to the number of vertices of the graph � as the rank r(C(�)). It equals the
minimal number of reflections needed to generate C(�), see for example Lemma 2.1
in [14]. Note that there exist graphs �1 and �2 with different numbers of vertices and
such that the groups C(�1) and C(�2) are isomorphic. In particular, the notions of
reflection and rank of a Coxeter group depend on a choice of generating set. We thus
obtain the following lower bound on the meridional rank of links.

Proposition 1 Let L be a link whose fundamental group surjects onto a Coxeter group
C(�), so that all meridians are mapped to reflections in C(�). Then

μ(L) ≥ r(C(�)).

Throughout the paper, we will consider Coxeter groups that arise as quotients of a
link group by sending all meridians to reflections. We refer to such groups as Coxeter
quotients of the corresponding link. They were introduced by Brunner, in the guise of
Artin quotients [9]; his construction was the starting point for our work.

The easiest examples of links admitting non-trivial Coxeter quotients are torus links
of type T (2,±n), i.e. closures of the 2-braid σ±n

1 ∈ B2, where n ≥ 2 is a natural
number. We claim that the fundamental group of T (2,±n) surjects to the rank two
Coxeter group Dn generated by two reflections a, b satisfying the relation

(ab)n = 1.

Figure 3 illustrates a consistent way of mapping the meridians of the diagram associ-
ated with the closure of the braid σ n

1 ∈ B2 to reflections of Dn , for n = 3.
Here the orientation of the meridians does not matter since these are all mapped

to reflections, which have order two. The labeling of the arcs is compatible with the
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Fig. 4 Coxeter quotient for the
pretzel knot P(−2, 3, 5)
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Wirtinger conjugation relation at each crossing:

((ab)ka)((ab)k−1a)((ab)ka)−1 = (ab)k+1a.

Moreover, the relation (ab)n = 1 insures that the meridians at the top of the braid
are mapped again to (ab)na = a and (ab)nb = b, respectively. Proposition 1 implies
that the meridional rank of two-bridge torus links is at least two, hence exactly two:
μ(L) = β(L) = 2. These examples are part of two larger families, pretzel links and
two-bridge links, whose meridional rank is detected by the rank of suitable Coxeter
quotients.

A twist region is a maximal string of bigon regions in the knot projection,
arranged end-to-end at their vertices. Pretzel links are defined via certain diagrams
P(a1, a2, . . . , ak) with k ≥ 3 vertical twist regions. The coefficients ai ∈ Z encode
the number of crossings in each twist region, and their signs. The convention can be
deduced from Fig. 4, which shows the pretzel knot P(−2, 3, 5).

Borrowing from the above discussion on two-bridge torus links, we deduce that
pretzel links of type P(a1, a2, . . . , ak) with all |ai | ≥ 2 admit a rank k Coxeter
group quotient:C(�(a1, a2, . . . , ak)), where�(a1, a2, . . . , ak) denotes a cycle with k
vertices, whose edges are labeled |a1|, . . . , |ak |, in a cyclic way. This can be seen in
Fig. 4, where a certain generating set of meridians of the pretzel knot P(−2, 3, 5) is
mapped to the generators a, b, c of a rank three Coxeter group, satisfying the relations
(ab)2 = 1, (bc)3 = 1, (ac)5 = 1. The lower bound on the meridional rank from
Proposition 1, μ(L) ≥ k, matches the bridge number again. Indeed, the standard
diagram of the pretzel link P(a1, a2, . . . , ak) has exactly k local maxima. Therefore,
we have just reproved the meridional rank conjecture for pretzel links with every
|ai | ≥ 2. The original proof by Boileau and Zieschang was based on 2-fold branched
coverings [7].

We now briefly turn to two-bridge knots, towhich ourmethod also applies. By using
the calculus of continued fractions, one can see that two-bridge knots are determined by
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a rational number α/β with relatively prime odd integers α, β such that −α < β < α,
see [11]. The fundamental group of the knot L(α/β) admits a presentation with two
generators x, y and one relation of the form wx = yw, where

w = x∗y∗ . . . x∗y∗

is a word of even length α − 1 and each star stands for a sign ±1, determined by
the fraction α/β. This is taken from [19]. Setting x2 = y2 = 1 reduces the relation
wx = yw to the Coxeter relation (xy)α = 1. The special case α/β = n/1 for odd
n corresponds to the torus knots of type T (2, n) discussed previously. We conclude
that all non-trivial two-bridge knots admit a Coxeter quotient of rank two. We can
visualize these Coxeter quotients as a labeling of the strands of a diagram of a two-
bridge knot by elements in the corresponding Coxeter group. Since every rational
tangle diagram can be completed to a two-bridge knot by attaching a trivial tangle,
then every rational tangle diagram has a labeling by elements of a rank two Coxeter
group. Moreover, the strands of the rational tangle that are incident to the boundary of
the tangle receive labels in the generating set {x, y} and the labels of these strands are
cyclically ordered around the boundary of the tangle according to the pattern xxyy.
We call such a labeling a rank 2 (Coxeter) labeling of a rational tangle.

It is known that the only links with meridional rank two are two-bridge links [8].
We do not know whether this can be seen by considering the maximal rank among all
Coxeter quotients of a link. In fact, we do not even know whether all non-trivial knots
admit non-cyclic Coxeter quotients.

3 Upper bounds on bridge number

Let D be a diagram of a link L . To obtain the desired upper bound on the bridge number
of L , wewill use theWirtinger number,ω(D), introduced in [4]. TheWirtinger number
is an integer associated to a knot diagram. It can be determined via a combinatorial
procedure for coloring the diagram, as recalled below. It formalizes the idea of finding
the minimal number of Wirtinger generators in D sufficient to generate the group
π1(S3 − L) by only using “iterated Wirtinger relations" in D.

Denote by n the crossing number of D and think of D as the union of n strands, or
closed arcs in the plane. Two strands are adjacent if they are the under-strands at some
crossing in D. Denote the set of strands in D by S(D).We say that D is partially colored
if we have fixed a function f : S(D) → {0, 1} such that A := {s| f (s) = 1} �= ∅.
Given such a function f , we refer to the elements of S(D) on which f evaluates to
1 as the colored strands of D, and we refer to A as a partial coloring of D. Given
two partial colorings A1 and A2 of the same diagram D, we say A2 can be obtained
from A1 via a coloring move on D, denoted A1 → A2, if the following conditions are
satisfied:

1. A1 ⊂ A2 and A2\A1 = {s j } for some strand s j ∈ S(D);
2. s j is adjacent to si at some crossing c in D with over-strand sk , where si , sk ∈ A1.
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The move A1 → A2 reflects the fact that if a subgroup H ⊂ π1(S3 − K , x0) contains
the Wirtinger generators corresponding to all strands in A1, then H also contains the
generator corresponding to s j ; this is seen by applying the Wirtinger relation at c.

We say D is k-colorable if1 there exists a subset A0 of S(D) with k elements and
a sequence of n − k coloring moves A0 → A1 → · · · → An−k on D such that
An−k = S(D). That is, after performing the sequence of coloring moves, every strand
in D is colored. It follows that the meridians of the strands in A0 generate the link
group via iterated application of the Wirtinger relations in D. We refer to the elements
of A0 as the seed strands of the coloring sequence or, simply, the seeds. The smallest
integer k such that D is k-colorable is the Wirtinger number of D, denoted ω(D).

It is easy to come up with examples which demonstrate that ω(D) depends on
the choice of diagram so is not a link invariant. In fact, the Wirtinger number can
be arbitrarily large for sufficiently complicated diagrams of the unknot [3]. We are
naturally more interested in minimizing the value of ω(D) over all diagrams D of a
given link L since, by definition

ω(D) ≥ μ(L).

Definition 1 Let L ⊂ S3 be a link. The Wirtinger number of L , denoted ω(L), is the
minimal value of ω(D) over all diagrams D of L .

It is straight-forward to see that ω(L) satisfies the inequalities

β(L) ≥ ω(L) ≥ μ(L).

In fact, the first inequality is never strict.

Theorem 3 [4, Theorem 1.3] Let L ⊂ S3 be a link. The Wirtinger number and the
bridge number of L are equal.

Therefore, given a diagram D of a link L , we have

ω(D) ≥ ω(L) = β(L) ≥ μ(L). (1)

We will prove Theorems 1 and 2 by using Coxeter quotients to show that, for links
covered by these theorems, ω(D) is also a lower bound for the meridional rank.

4 Meridional rank conjecture for twisted links

Let L be a twisted link with diagram D bounding a twisted surface F . In order to find
the desired bounds on μ(L) and β(L), it proves useful to retract the spanning surface
F to a graph as in [9]. Since the boundary of a disk in F contains multiple arcs in
the knot diagram which represent different Wirtinger generators, it is convenient that

1 We have slightly simplified the original definition of k-colorability, which makes use of k different colors.
Multiple colors are needed in the proof of the Main Theorem of [4], but they are of no help to us here. The
modified definition has no effect on the value of ω(D).
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the vertices of the resulting graphs be disks of non-zero radius, rather than points.
We therefore work with fat-vertex graphs, which are planar graphs whose vertices
are replaced by disjoint closed disks of small positive radius. These disks are the fat
vertices. The boundary of each vertex is partitioned by the endpoints of incident edges
into a finite collection of disjoint arcs. A fat-vertex graph is weighted if an integer is
assigned to each edge.

Given L , D and F as above, we obtain from F a weighted fat-vertex graph in the
obvious way: view each disk of F as a fat vertex and retract each twisted band of F
to its core edge, weighted by the number of (signed) half-twists of the band. We call
this graph the fat-vertex graph associated to D and, from here on, denote it by �. Also
denote the dual weighted graph by �∗, where each edge of �∗ inherits the weight of
the corresponding edge of �. For reasons that will become imminently apparent, we
call the weighted graph �∗ the Coxeter graph associated to D. We suppress the choice
of checkerboard coloring in this terminology and, in the case where D is a twisted
diagram, we are of course using the checkerboard coloring which detects this property.

The surface F is twisted if and only if all weights of � are at least 2 in absolute
value and �∗ is a simple graph; L is then a twisted link. Under this assumption,
Brunner [9] shows that π1(S3\L) surjects to the Coxeter group C(�∗) defined by the
weighted graph �∗. Thereby, meridians of the boundaries of fat vertices are mapped to
a generating set of reflections in C(�∗). Applying Proposition 1, we conclude that the
meridional rank of L is bounded below by the rank of the Coxeter group determined
by the graph �∗. This proves:

Lemma 1 Let L be a twisted link with associated Coxeter graph �∗. The merdional
rank of L is bounded below by the number of vertices in �∗.

The next proposition, established later in this section, allows us to prove Theorem 1.

Proposition 2 Let L be a twisted link with associated Coxeter graph �∗. The bridge
number of L is bounded above by the number of vertices in �∗.

Proof of Theorem 1 Let L be a twisted link and let �∗ be the Coxeter graph associated
to a twisted diagram of L . Denote by v the number of vertices of �∗. Combining
Lemma 1 and Proposition 2, we obtain

v ≥ β(L) ≥ μ(L) ≥ v.

That is, the meridional rank conjecture holds for twisted link and the bridge number
of L is equal to the number of vertices in �∗ or, equivalently, to the number of regions
in the planar complement of a twisted surface for L . 	


In light of Theorem 1, it is natural to ask which knots admit twisted diagrams.
Prime twisted knots with at least 2 twist regions and at least 7 half-twists per region
are hypebolic [15]. By results of Lackenby [20], the volume of such a knot is also
bounded above by a constant of the bridge number. Hence, hyperbolic knots with
high volume yet small bridge number are not covered by our theorem. However, our
methods do allow us to establish the meridional rank conjecture for certain hyperbolic
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Coxeter groups and meridional rank of links 1541

knots of fixed bridge number and arbitrarily high volume, e.g. two-bridge knots, as
mentioned in the last paragraph of Sect. 2. More generally, Theorem 1 extends to a
large class of links obtained from twisted links by replacing twist regions by rational
tangles. For example, in Fig. 4 we can replace the last twist region by a rational tangle,
say the one found at the very right of Fig. 2, retaining the a, c labels. This would
preserve both the upper and lower bounds we found. The analogous construction can
be performed inmany situations, extending the proof of themeridional rank conjecture
to the resulting knots. However, in general, replacing a twist region by a rational tangle
does not preserve the Wirtinger number of a diagram.

4.1 Proof of Proposition 2

For the remainder of this section, assume that L is a twisted link with twisted diagram
D. Denote the fat-vertex graph and Coxeter graph associated to D by � and �∗,
respectively. We will obtain the desired bound on β(L) by the technique recalled in
Sect. 3. It will be useful to be able to perform coloring moves not only on D but
directly on �.

Definition 2 Let � be a fat-vertex graph and denote by E the set of edges of �. A
segmentof� is either an element of E or a connected arc contained in ∂(v)\{∂e|e ∈ E},
where v is a fat vertex.

Denote by S the set of segments of a fat-vertex graph �. We say that � is partially
colored if we have fixed a function f : S → {0, 1} such that A := {s| f (s) = 1} �= ∅.
As before, refer to A as a partial coloring of � and to the elements of A as the colored
segments. Given two subsets A1 ⊂ A2 ⊂ S with A2\A1 = {s} a single segment, we
allow a coloring move A1 → A2 if one of the following holds:

1. s is an edge of � and both segments adjacent to the same vertex of s are in A1.
2. s is an arc in the boundary of a fat vertex of � and s is incident to an edge in A1.

Case 1 in which a coloring move is allowed on � is motivated by the following
observation. Let � be a fat-vertex graph obtained from a link diagram and spanning
surface. An edge e of� denotes a twist region in the link diagram. Themeridians of the
two arcs incident to the same vertex of e generate all meridians of strands contained
in the corresponding twist region, via iterated Wirtinger relations, compare Fig. 3.
Case 2 is motivated by the fact that the meridians of arcs in a twist region generate the
meridians of arcs incident to a twist region.

Given a fat-vertex graph �, denote the set of its segments by S(�), the set of its
edges by e(�) and the number of elements in S(�) by m. We say � is k-colorable if
there exists a k-element subset A0 of S(�)\e(�) and a sequence of m − k coloring
moves A0 → A1 → · · · → Am−k on � as defined above such that Am−k = S(D),
that is, at the end of the coloring process every segment of � is colored. We refer to the
elements of A0 as the seed segments or seeds.When� is the fat-vertex graph associated
to a link diagram D, the seed segments correspond to meridional elements of L that
generate the group π1(S3\L) via iterated application of the Wirtinger relations in D.
The minimum value of k such that � is k-colorable is the Wirtinger number of �,
denoted ω(�). The following is immediate.
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Lemma 2 Let D be a link diagram and � its associated fat-vertex graph. The inequality
ω(�) ≥ ω(D) holds.

To complete the proof of Proposition 2, we need one last ingredient, namely that a
fat-vertex graph � can be colored starting from as many seed segments as the number
of vertices in �∗.

Lemma 3 Let � be a connected fat-vertex graph associated to a reduced link diagram
D. The Wirtinger number of � is bounded above by the number of vertices in the dual
graph �∗.

But first:

Lemma 4 Let � be a connected finite plane graph with no loops, no separating vertices
and no separating edges. Then either � is a cycle or it contains a subgraph T (not
necessarily an induced one) that is homeomorphic to the theta graph, that is, the graph
with two vertices connected by three parallel edges.

Proof This time we denote by �∗ the plane dual graph of � where we omit the ver-
tex corresponding to the unbounded region. The assumptions on � imply that �∗ is
connected. If �∗ is a single point, the absence of separating vertices implies that �

is a cycle. When �∗ has at least two vertices, � contains two adjacent plane regions
sharing one or several edges. The union of all the edges adjacent to these two regions
contains an embedded theta graph. 	

Proof of Lemma 3 Since D is reduced, it contains no nugatory crossings. Therefore,
the graph � has no leaves and no disconnecting edges. Indeed, a leaf in a fat-vertex
graph corresponds to a region in a link diagram which can be removed by a sequence
of Reidemeister I moves. Similarly, disconnecting vertices and edges correspond to
nugatory crossings and connected sums.Nugatory crossings are not allowed in reduced
diagrams. Secondly, it is enough to consider twisted diagrams of links whose compo-
nents are prime, since both bridge number and Coxeter rank satisfy suitable additivity
properties. Given a connected sum of links L = L1#L2, the inequality

β(L1) + β(L2) − 1 ≥ β(L)

is immediate. It is in fact equality [13,23], though we do not rely on this result. In
addition, if the graph � is obtained by identifying a vertex in �1 with one in �2, a
vertex count gives the following relation among the ranks of the correspondingCoxeter
groups:

r(C(�)) = r(C(�1)) + r(C(�2)) − 1.

Therefore, if we denote the twisted links determined by these graphs by L := L(�),
L1 := L(�1) and L2 := L(�2), by Proposition 1, these links satisfy

μ(L) ≥ μ(L1)) + μ(L2) − 1.
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Hence, if the equalityβ = μ holds for each of L1 and L2, it also holds for the connected
sum L1#L2, seen as follows:

β(L1) + β(L2) − 1 ≥ β(L) ≥ μ(L) ≥ μ(L1) + μ(L2) − 1 = β(L1) + β(L2) − 1.

We will thus assume that � has no disconnecting vertices.
In sum,wemay prove the Lemma by an induction argument on connected fat-vertex

graphs which are 1-connected, 1-edge-connected and have no vertices of valency one.
Denote the set of such graphs by G. We will show that any element of G can be
obtained from the graph G0 containing a single fat-vertex and no edges by a finite
sequence of the following operations:

1. adding a self-loop to an existing vertex;
2. subdividing an edge into 2 edges;
3. adding an edge between two existing vertices.

To verify that these operations suffice to construct all elements ofG from G0, define
the complexity of a graph G ∈ G to be the integer |v(G)| + |e(G)|, the total number
of edges and fat-vertices in G. Note that each of the operations (1)–(3) increases this
complexity. To see that any G ∈ G can be constructed from G0 by a finite sequence
of these operations, we show that given G ∈ G, G �= G0, one can undo one of the
operations (1)–(3) and remain within G.

If G ∈ G with |v(G)| + |e(G)| > 1 has a loop l, we undo operation (1) on this
loop. The resulting graph, G ′, is connected. To see that G ′ has no leaves, we only need
to consider the vertex v incident to the loop l, since no other vertex changes valency
due to the removal of l. Suppose that v is a leaf in G ′. This implies that v had valency
three in G and was incident only to l and one other edge e. It follows that e was a
disconnecting edge in G, a contradiction. Note also that removing a self-loop can not
create disconnecting edges or vertices. Therefore, G ′ ∈ G.

Now suppose that G does not have a loop but has a degree-2 vertex v, incident to
edges e1 and e2. In this case, undo operation (2) at v, producing a new edge e. The
resulting graph, G ′, is connected. It has no leaves or disconnecting vertices since G
had none. If e is a disconnecting edge in G ′, then e1 was one in G. If removing some
other edge in G ′ would disconnect the graph, then removing the same edge would
disconnect G. Therefore, G ′ ∈ G.

Finally, assume thatG contains neither a loop nor a degree-two vertex. SinceG ∈ G
and has no loops, it satisfies the hypotheses of Lemma 4. Since G has no degree-two
vertex, it is not a cycle. Therefore, G contains an embedded theta graph θ consisting of
three paths γ1, γ2, γ3 connecting two vertices v,w of G. Choose three edges e1, e2, e3
of G with ei ⊂ γi . Let G ′ be the graph obtained from G by removing the edge e1
and all edges connected to e1 by a chain of vertices of valency two, thereby undoing
operation (3), after possibly undoing multiple operations of type (2). It is clear that G ′
is connected and has no leaves. Furthermore, if some vertex in G ′ is disconnecting, the
same vertex is seen to be disconnecting in G. What requires a check is that G ′ has no
disconnecting edges. Assume there is an edge e in G ′ such that G ′\e is disconnected.
Let a and b be two vertices in different components of G ′\e. By assumption, e is not a
disconnecting edge in G, so there is a path γ in G such that γ connects a to b and does
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not contain e. If γ does not meet the chain of edges G\G ′, then γ is also a path in G ′,
contradiction. If γ meets that chain, then we may replace each connected component
of γ ∩ (G\G ′) by a point (if it does not traverse the entire chain) or by an arc in the
subgraph θ passing through γ2 or γ3, avoiding the chain G\G ′. We thus obtain a path
in G ′ connecting a to b, contradiction. This shows that G ′ ∈ G.

Now let � ∈ G be as in the statement of the Lemma and denote by k the number
of vertices in �∗. We will show inductively that � is k-colorable.

Let � = G0, the graph consisting of a single fat-vertex. In this case, �∗ has one
vertex, so k = 1. It is clear that � is 1-colorable: choose the only segment of � as the
seed.

Now assume �1 ∈ G is k1-colorable, where k1 is the number of vertices in �∗
1 , and

let � ∈ G be obtained from �1 ∈ G by one of the operations (1)-(3). We will show
that � is k-colorable, where k denotes the number of vertices in �∗.

By assumption, there exists a coloring sequence A0 → A1 → · · · → An

for �1, where each Ai is a set of segments in �′. Moreover, A0 has k1 elements,
and Ai+1\Ai contains exactly one element. Order the set of segments S(�1) as
s1, s2, . . . , sk1 , sk1+1, . . . sk1+n , where {s1, . . . , sk1} are the elements of A0, taken in
any order, and for m > k1, sm is the segment colored when the (m − k1)-th coloring
move is performed. At the risk of minor ambiguity, we will call this sequence of seg-
ments a coloring sequence for �1 as well, and we will use it to produce the desired
coloring sequence for �.

Case A Suppose that � is obtained from �1 by subdividing an edge e ∈ S(�1)

into two edges e1, e2 ∈ S(�), both incident to a degree-two fat-vertex v in �. By
construction, the boundary of v contains two segments; denote them a and b. We see
that

S(�) = {S(�1)\{e}} ∪ {e1, e2, a, b}.

We will produce a coloring sequence for � from the given coloring sequence
s1, . . . , sk1 , . . . , sk1+n for �1. Since {s1, . . . , sk1} are seed segments and e is an edge,
e appears after sk1 in the sequence. Denote the position of e by r > k1 and rewrite:

s1, . . . , sk1 , . . . , sr−1, e, sr+1, . . . , sk1+n .

A valid coloring sequence for � is then

s1, . . . , sk1 , . . . , sr−1, e1, a, b, e2, sr+1, . . . , sk1+n .

Here, the seeds are {s1, . . . , sk1} and we have chosen notation so that e1 is the
edge incident to segments contained in the boundary of fat-vertex which are among
{s1, . . . , sr−1}. It is clear that either e1 or e2 has this property since a coloring move
was performed on �1, coloring e from one of the two fat-vertices it is incident to.
Once e1 is colored, a and b can be colored in any order; this, in turn, allows us to
color e2. All remaining coloring moves in this sequence are valid because so were the
analogous coloring moves on �1.
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Thus, we have exhibited a coloring sequence for � starting with k seeds, where
by assumption k is the number of vertices in �∗

1 . Since � was obtained from �1 by
adding an edge and a vertex, Euler characteristic shows that �∗ has k vertices as well.
Therefore, the coloring sequence produced has the desired number of seeds.

Case B Suppose that � is obtained from �1 by adding an edge e. Denote by a
and b the segments in �1 containing the endpoints of the new edge e. We consider
operations (2) and (3) simultaneously, that is, we allow for the possibility that a and b
are the same arc. If a and b are distinct, let a1, a2 denote the segments in � into which
e subdivides a and, similarly, let b1, b2 be the segments in � into which e subdivides
b. We have

S(�) = {S(�1)\{a, b}} ∪ {a1, a2, e, b1, b2}.

In the case where a and b are the same arc, the endpoints of e subdivide a into arcs
a1, a2, and b2 and the new edges are {e, a1, a2, b2}. In what follows, assume that a1
and a2 are incident to the same vertex of e.

Denote by s1, . . . , sk1 , . . . , sm a coloring sequence for �1 in which {s1, . . . , sk1}
are the seeds. From this, we will construct the desired coloring sequence for �. Since
� is obtained from �1 by adding an edge, by Euler characteristic we see that �∗ has
k1 + 1 vertices, so we can use an extra seed when coloring �.

Since a and b are segments in �1, they appear in the coloring sequence as some
si , s j where, without loss of generality, i ≤ j . We can rewrite the sequence as

s1, . . . , si−1, a, si+1, . . . , s j−1, b, s j+1, . . . , sm .

Here, a is either a seed (if i ≤ k1) or becomes colored via a coloring move (if i > k1).
We consider both cases.

Case B1 If a is a seed, the labels a1 and a2 can be assigned arbitrarily to the
segments into which the new edge e subdivides a. A possible coloring sequence for
� with k1 + 1 seeds will be:

s1, . . . , si−1, a1, a2, si+1, . . . , sk1 , e, b1, b2, sk1+1, . . . , ŝ j . . . , sm .

(If a = b, omit b1.)
The seeds here are {s1, . . . , si−1, a1, a2, si+1, . . . , sk1}. Let us check that the

sequence is valid, that is, each segment which appears after sk1 is colored by a per-
mitted coloring move. The edge e can be colored since one of its vertices is incident
to the two arcs a1, a2, both of which precede e in the sequence. Next, b1, b2 can be
colored since they are incident to e. All remaining coloring moves are valid because
so were the analogous coloring moves on �1.

Case B2 If a was colored via a coloring move, it follows that there is an edge sl ,
l < i , which shares an endpoint with a. To write down a coloring sequence in this
case, say a2 is the segment in � which shares an endpoint with sl after subdivision.
With this notation, a possible coloring sequence for � is

a1, s1, . . . , sk1 , . . . , si−1, a2, e, b1, b2, si+1, . . . , ŝ j , . . . , sm .
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Fig. 5 Non-bipartite tree with
even weights defining a 3-bridge
knot

2
2
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(Again, if a = b, omit b1.)
The k1+1 seeds here are {a1, s1, . . . , sk1}. Again, we need to verify that the coloring

moves performed are valid. By assumption, a2 is incident to the colored edge sl , l < i ,
so a2 can be colored. Then, as in the previous case, the edge e can be colored since it
is incident to a1, and b1, b2 can be colored since they are incident to e. The remaining
coloring moves are valid because so were the analogous coloring moves on �1.

Therefore, any � ∈ G can be colored from as many seeds as the number of vertices
in �∗. 	


Proposition 2 is now a simple consequence of the above results. Recall that L
denotes a link with reduced diagram D, associated fat-vertex graph � and Coxeter
graph �∗. Let v(�∗) be the number of vertices in this graph. Combining Eq. 1 with
Lemmas 2 and 3 gives

v(�∗) ≥ ω(�) ≥ ω(D) ≥ β(L).

5 Meridional rank conjecture for bipartite arborescent links

The proof of Theorem 2 is again based on the existence of Coxeter quotients whose
rank matches the Wirtinger number in a suitable link diagram. We start by deriving
an upper bound on the bridge number of general arborescent links.

Proposition 3 Let L(T ) be an arborescent link associated with a plane tree T with
arbitrary weights. Then the bridge number of L(T ) is bounded above by the number
of leaves of T .

In view of Theorem 2, we may expect the bridge number of arborescent links to
equal the number of leaves in the underlying tree. However, this is false. The knot
associated with the even weight tree with four leaves shown in Fig. 5 turns out to be
a three-bridge knot.

Incidentally, this is where our condition on trees originates from. The bipartite
structure of trees turns out to be essential in proving the existence of Coxeter quotients
whose rank is equal to the number of leaves.

Proof of Proposition 3 We will prove that the Wirtinger number of the natural arbores-
cent diagram of L(T ) is bounded above by the number n of leaves of T , by induction
on n. The base case – two leaves – is easy, since the family of links associated with
even weight trees with two leaves coincides with the class of two-bridge links [11].
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Fig. 6 Bottom tangle B and initial seed s0

s0s0

s1
s1

Fig. 7 Coloring rational tangles

Let T be a plane tree with n leaves. While there is no canonical link diagram
associated to T , there is a natural construction depending on an initial choice of
branching point in T . We highlight an essential property of this construction. A branch
in T is a chain of edges connecting a leaf to the first vertex of valency at least 3. The
diagram is then built from a single twisted band by successively adding n − 1 rational
tangles, one for each branch in T . The convention can be chosen so that the “rightmost"
branch in the tree corresponds to a rational tangle, labeled B in Fig. 6, located in the
bottom right corner of the diagram. This rightmost branch is the one we add in the
inductive step, thereby increasing the number of leaves in T by one and simultaneously
adding a rational tangle to a diagram assumed colorable with n − 1 seeds.

We now show that the diagram of L(T ) is colorable with n seeds, one of which,
say s0, is at the bottom right of the diagram.

The key observation is that we can place a new seed s1 inside the tangle B, so that
the partial coloring defined by s0 and s1 propagates to the four outgoing strands of B.
This is illustrated in Fig. 7, for a rational tangle of even and odd length (the sign and
number of crossings are irrelevant there). But now we are done, since we can remove
the tangle B, as shown on the right of Fig. 6, which amounts to removing one branch of
the tree T , and use the induction hypothesis for trees with n −1 leaves. This procedure
yields one seed per rational tangle, in addition to the initial seed s0, as seen in Fig. 2.
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The following proposition settles the proof of Theorem 2; together with Proposi-
tion 3, it provides the desired equality between the bridge number of the link L(T ),
its meridional rank, and the number of leaves of the underlying even weight bipartite
tree T .

Proposition 4 Let L(T ) be an arborescent link associated with a plane bipartite tree T
with non-zero even weights. Then the fundamental group of S3\L(T ) admits a Coxeter
group quotient whose rank is equal to the number of leaves of T . In particular, the
meridional rank of the link L(T ) is bounded below by the number of leaves of T .

Proof The proof is again by induction on the number of leaves of the tree T . Here the
case of two leaves is less obvious, since it amounts to proving that the fundamental
group of non-trivial two-bridge links admits a Coxeter group quotient of rank two.
This is just what we did in the last paragraph of Sect. 2. To be more precise, we only
dealt with the case of two-bridge knots there. The case of two component two-bridge
links is trivial, since their fundamental group admits Z2 as a quotient, thus the rank
two Coxeter group (Z/2Z)2.

Let T be a plane bipartite tree with non-zero even weights and n leaves. Every
vertex of T correponds to a twist region in the natural diagram of L(T ). These come
in two versions, horizontal and vertical, which alternate between adjacent vertices, as
in Fig. 2. The bipartite condition on the tree T means that all vertices of valency at
least three correspond to the same type of twist region, say the horizontal one. We will
construct a Coxeter quotient G of rank n with the following additional property: For
all vertices of valency at least three, the meridians of the corresponding twist region
are sent to the same reflection in a generating set for G.

An example of such a quotient is defined by the labeling in Fig. 2. The quotient
group there is the Coxeter group generated by the four reflections a, b, c, d satisfying
the Coxeter relations

(ab)4 = 1, (ac)3 = 1, (bc)2 = 1, (bd)4 = 1, (cd)5 = 1.

In that diagram, there are two twist regions carrying a single label (a and b); they
correspond to the two vertices of valency three.

For the inductive step, there are two cases to consider:
Case 1 A branch is added to the tree T , at a vertex v of valency at least three.

Suppose the arborescent link diagram associated with T admits a labeling by elements
of a rank n Coxeter group defining a rank n Coxeter quotient of the fundamental group.
Additionally, we suppose that the twist region of the vertex v carries a single label,
say a, and every other branch of T corresponds to a rational tangle with a rank 2
Coxeter labeling. Moreover, by induction we can assume that the labels incident to
the boundaries of these rational tangles are all taken from the generating set of the
rank n Coxeter group. Then, we can add a branch at v, i.e. we can add a rational
tangle X with a rank 2 labeling at the twist region of v, by introducing a label x , as
shown in Fig. 8. Here, x denotes a new generator, which, together with the previous n
generators, defines a rank n + 1 Coxeter quotient.
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Fig. 8 Inserting a rational tangle, case 1
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Fig. 9 Inserting a rational tangle, case 2

The reflection x satisfies Coxeter relations with the two neighbouring generators (b
and c, in the figure). These are determined by the rational tangle X and its neighbour
(B, in the figure).

Case 2 A branch is added to the tree T , at a vertex v of valency two.
Again, we suppose the arborescent link diagram associatedwith T admits a labeling

by elements of a rank n Coxeter group defining a rank n Coxeter quotient of the
fundamental group. Additionally, we suppose that the twist region of the vertex v

carries a single label, say a, and every other branch of T corresponds to a rational
tangle with a rank 2 Coxeter labeling. Moreover, we assume that the labels incident
to the boundaries of these rational tangles are all taken from the generating set of the
rank n Coxeter group. However, this time we cannot suppose that the twist region of
the vertex v carries a single label. Rather, the twist region of the vertex v is part of a
rational tangle B, as shown at the top of Fig. 9.

For illustration purposes, we chose a tangle with six twist regions, three of which
are “horizontal" (the ones on the bottom line). The labeling of the arborescent link
diagram L(T ) associates Coxeter generators a and b to the four outgoing strands of
the rank 2 labeled rational tangle B, satisfying a Coxeter relation determined by B.
Now we insert a rank 2 labeled rational tangle X at the twist region of the vertex v,
and introduce a new Coxeter generator x , as shown in Fig. 9. The generator x satisfies
Coxeter relations with generators a and b, determined by the rational tangle X , and
the rational leftover tangle on the right of X . (For the explicit Coxeter relation, see
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again the last paragraph of Sect. 2.) Finally, the original Coxeter relation between a
and b is replaced by (ab)2 = 1, equivalently ab = ba. This is the only place where
we use the condition that all weights are even, i.e. that all twist regions have an even
number of crossings.2

In both of the above cases, the number of leaves and the rank of the Coxeter quotient
simultaneously increase by one. With this observation, we conclude the proofs of
Proposition 4 and Theorem 2. 	
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